Skip to Content

Author Archives: Alex d’Anjou

  1. How Are Polyester Acoustic Panels Made & How To Identify Quality Panels

    1 Comment

    Poly Sonic Thick Grey Ceiling Panels in Open Office Space

    One of the hottest trends in office furniture and interior design is the rise of polyester (PET) acoustic panels. The use of these panels is growing significantly in markets such as construction, retrofits of existing offices, and other commercial and public spaces.

    Over the past 3 years, polyester acoustical panels have seen a massive upsurge in demand. This is due, primarily, to their flexibility in color, form, and ease of use when compared to traditional fiberglass acoustic panels. Fiberglass panels can cause irritation and air contamination due to the chemicals they sometimes contain in their binders.

    The industry has quickly adopted these panels whether being used as desk dividers, light fixtures, hanging sound baffles, wall-mounted art, or any number of other uses. But what exactly are polyester acoustic panels? How are they made? What should you look for in a quality product or a vendor? We answer all of these questions and more.

    How are polyester acoustic panels made?

    To understand the challenges that arise on the quality front, you first have to understand how polyester acoustic panels are made.

    1. Define the desired outcome

    The process to create a finished acoustical panel starts with determining what characteristics we want the finished panel to have. We can affect acoustical curves (NRC), stiffness, surface texture, or color by changing the fiber material or size, product density or thickness, or manufacturing processing of our finished panels. Each variable lets us dial in the ideal finished characteristics. Our standard Poly-Sonic panels are comprised of recycled polyester fiber and special lower melting point polyester fiber.

    2. Manufacture the needle punch felt

    Next, we start the manufacturing process. Every polyester acoustic panel starts out life as a nonwoven, needle punch felt. This felt is similar to the felt kids make craft projects out of, but much thicker and denser!

    We begin by taking raw fiber and turning it into a “web”. We then build density and surface characteristics by adding batts and needling the material together. The repeated needling that the felt receives is one of the keys to creating a stiff panel while maintaining a super smooth-surfaced panel. From this process, we create a “master roll” of felt. For a more detailed description of how needle punch felt is made, check out this link.

    Nonwoven production line carded web

    3. Heat-setting

    The felt moves to the heat-setting machinery following the creation of the master roll. This could be a mold for 3d shaped panels or some form of flat pressing system. This process changes the material from a roll of flexible felt to a stiff polyester acoustic panel.

    When heat hits the polyester fibers, they melt and flow like a liquid thermo-plastic. Fibers like these are specially designed to have a low melt point. As this material cools, it turns back into plastic but is now spread throughout the felt, attached to all the fiber around it, and (with the assistance of the needling) creates the stiffness of the finished acoustic panel.

    The heat-setting process is one of the most difficult to perfect. This is because the material will shrink three-dimensionally while being heated. And any imperfections in needling will create very obvious surface defects.

    4. Cutting

    The final manufacturing step is to cut the panels to their final dimensions or shape. Most architects and interior designers need tolerances of +/- 1/8th of an inch. Some elaborate designs require tighter than +/-1/16th of an inch. This would normally favor a die-cutting process but in many cases, the variety of shapes and rectangular dimensions needed would make this cost-prohibitive. Only with extremely precise cutting tools such as CNC machinery using oscillating blades, lasers, or waterjet cutting can near-perfect acoustical panels be cut every time.

    What quality attributes should you look for when assessing polyester acoustic panels?

    There are several factors to consider when determining whether a polyester acoustical panel is of top quality.


    Is the first panel just like all the others and, also as important, is each individual polyester acoustic panel consistent within itself?

    One of the key giveaways of an inconsistent process is that one panel does not look like the next. When dealing with large-scale projects, even minor consistency problems can stand out when looking from panel to panel or from one section of a panel to another. Unfortunately, due to the nature of the panel manufacturing process, it is impossible for panels to be exactly identical, but the closer they are, the better.


    The distribution of colors in a panel is one of the first things to stand out. Many panels have a “heathered” look to them. This comes from blending two or more colors of fiber together. Do you see clumps color? Or is everything evenly spread out?


    Another one of the most noticeable attributes comes when comparing the thickness of different panels. When placing panels next to each other on a wall or in a line of desk dividers, check to see if the panels are of different thicknesses.

    The thickness of each acoustic panel is one of the major drivers of its acoustical absorption capability. Thicker is better!


    Many applications for acoustic panels, such as desk dividers, require very stiff panels. Make sure to check if the panels stiff enough for your use. Is each panel consistently stiff? This could be from one corner to another or from one surface side to another.

    Many manufacturers struggle with getting enough heat all the way through the panels to fully activate the low-melt fiber. This is especially true on thicker panels. Often, an inferior panel will have a softer center and two harder surface faces when you look at the panel from the side. When this happens, the panels tend to not hold mounting bolts or hardware as well and also tend to collapse and bend easily when held from only one side. This usually destroys the panel by creating unwanted wrinkles on the surface.

    Acoustic Certifications (ASTM C423)

    Polyester acoustic panels have many uses, but as the name implies, “acoustic” tends to be the key attribute for many applications. All panels should have an NRC value, and most “standard” specifications will.

    Where this gets tricky is when comparing panels from different vendors that look the same but have vastly different ASTM C423 results. Logic says that the higher number is better, right? Well, not quite…

    There are different variations of the ASTM C423 test. These range from “A” mount where the acoustic panel is placed directly against a cement floor (and will have a lower NRC number) to “E Mount” where the panel is suspended several inches in the air (and the NRC number will be higher). It isn’t wrong for a vendor to use “E” mount test data, but make sure you compare apples to apples when comparing!

    How acosutical panels are measured for sound absorption

    As a secondary note for ASTM C423 testing that produces an NRC value, keep in mind that NRC is an average of performance at different frequencies. If you have specific acoustical profiles or sound frequencies that you need to target, then make sure you look at the charts to compare performance at your specific frequency.

    Acoustical curve for NRC absorption values on PET acoustic panel

    The acoustical curve of BIT’s Poly-Sonic 45 (9mm thick) acoustical panel. Note the different absorption coefficients at different frequencies. NRC: 0.30

    Flame and Smoke Certifications (ASTM E84)

    The ASTM E84 certification uses a combination of a flame spread and smoke generation test. It is one of the most important certifications for applications that are considered “building materials”. Depending on your application, you may not require this certification, but most suppliers will have their acoustic panels tested to this specification.

    There are several results possible all resulting from the flame spread portion of the test. The generally accepted standard is “Class A” and, if your application requires this test then be sure to look for this.

    One word of caution here, not all ASTM E84 tests or testing labs are equal. Many of our customers are wary of using unknown foreign laboratory results for good reason. We have heard some horror stories about vendor-provided laboratory results looking good but when independently tested their panels fail miserably.

    Due to the moral values and legal penalties involved in failing this test, most of our customers will conduct their own testing using a US certified lab. We recommend that you do the same if you do not personally know the lab that conducted the testing.

    What to look for in a vendor

    Now that we have reviewed the critical parts of a quality panel, it is easier to identify what to look for (and what we strive to be!) in a vendor as well. For many customers, being able to provide a consistent, high-quality panel is paramount and all-encompassing. Other normal vendor characteristics to inquire about are minimum order quantities, lead times, and, of course, price. However, there are a few other factors to consider that not every PET acoustic panel vendor can provide.

    First is the ability to customize. The market is becoming flooded with 9mm thick panels that look, feel, and perform pretty similarly. But your company might require a distinct acoustical performance curve, custom color options, or different thicknesses. Finding a supplier who can work with you to provide the exact product you need isn’t always needed, but be sure to review your requirements and make sure the company you are working with can handle them.

    Another often overlooked aspect of vendor capability is someone you can build a relationship with. Maybe you are in a bind and need an order shipped early. Or you are stuck with a whole truckload of panels after a customer backed out of a deal. Is your vendor willing to take them back no questions asked? Finding a company that you can work with is often worth paying a bit more when they save you headaches down the road!

    Bouckaert Industrial Textiles tries to meet all of our customer’s needs from minimum order quantities, to lead time, to price, to customization and relationship. Our Poly-Sonic polyester acoustical panels are designed and manufactured entirely in the USA.

    Have questions or want to learn more about us? Contact us today!

  2. Bouckaert Invests In Acoustical Panel Market With New Equipment Coming 2021

    Leave a Comment
    PET acoustic panel uses: hanging baffles

    OneSchool Global New Zealand, Maungaturoto Campus

    Bouckaert Industrial Textiles is pleased to announce it’s further investment in its growing share of the polyester acoustical panel market. BIT hopes to continue its success in this space with the purchase of several pieces of new equipment that will be installed starting in Q1 2021.

    Bouckaert first entered the polyester acoustical panel market two years ago as a US manufacturing alternative to Chinese imports. Since that time, it has greatly improved quality, capacity, and capabilities on existing equipment and gained a sizeable client base. Primarily targeting customers who are looking for high-quality, US-made acoustical panels BIT has seen massive growth in this industry. BIT has separated itself from competitors in a number of areas. First, the ability to manufacture in the United States. Secondly, the ability to produce industry-standard specifications at an extremely high quality. Finally, BIT has distinguished itself with its ability to customize any characteristics such as weight, thickness, dimensions, or colors. Combined with over 30 years of advanced technical knowledge of how to engineer felt for best results, BIT has become a primary source for PET panels for many customers. Bouckaert sells acoustical panels under its own brand name “Poly-Sonic,” white-labeled, or as roll goods for customers to molded shapes from. BIT stands ready to help acoustical consultants, interior designers, architects, furniture and lighting companies, and others realize their needs.

    The addition of a brand new double belt press will allow BIT to double its production capacity of polyester acoustic panels. This machine will also significantly improve the quality of the PET sounds absorbers with increased stiffness and exceptional surface quality. With an installation target date of Q1 2021, this is a major component of BIT’s growth plans in the future.

    Polyester acoustical panel manufacturing line

    Furthermore, coming in Q3 2021, a new carding production line will again double BIT’s capacity. This will also improve quality by more consistently blending fiber (and therefore color!) throughout the acoustical panel.

    Felt carding equipment to produce sound absorbers

    Driven by customer demand, BIT already has several anchor customers lined up. Once complete, Bouckaert Industrial Textiles is positioned to take the next step as a provider of polyester acoustical panels to the North American market.

    Have questions about BIT’s polyester acoustical panels? Visit our Poly-Sonic page for more details!

  3. Needle-Punch Felt, What Is It and How Is It Made?

    Leave a Comment

    What is needle-punch felt? When most people think of textiles, they think of products like shirts, jeans, and blankets. But the world of fabric goes far beyond clothing and blankets. Textiles are used to make everything from the seatbelts in your car to acoustic panels or desk dividers in your office to the blue medical PPE masks that everyone has become used to in 2020.

    Most of the fabrics you encounter each day are woven or knit (think of those warm blankets your grandma knitted for you as a kid). Even most of your shirts are made this way except they use much thinner fibers. If you look closely at the clothes you are wearing, then you will likely see a very small grid pattern.

    woven alternative to nonwoven

    But a large portion of the fabric that we encounter every day is made using “nonwovens”. As the name suggests, nonwoven felt is made by joining fibers through methods other than weaving such as by using needle entanglement, heat, moisture, or pressure to hold the fibers together.

    One of the most well-known types of nonwoven is children’s craft felt. Remember that colorful fabric you used to make your art projects? That is made using a nonwoven construction technique called “cross-lapped needle-punch” or more simply “needle-punch.”

    Needle-punching is one of the methods used for making a nonwoven felt. This involves taking loose fibers and “needling” them together using a needle loom full of barbed needles to force the fiber to push through and entangle itself. It is also one of the types of nonwoven that Bouckaert Industrial Textiles specializes in producing.

    What Applications is Needle-Punch Felt Used For?

    Beyond craft felt, needle-punch felt has many uses, often in highly technical applications. Some of the most common uses are:

    • Soundproofing
    • Acoustic panels and baffles
    • Filtration
    • Equestrian saddle pads
    • Office and desk dividers
    • Padding for vehicle sun visors
    • Molded automobile headliners and trunk liners
    • High-performance thermal insulation
    • Vibration isolators
    • Mattress pads
    • Synthetic soil growing media
    • Under-carpet
    • Gasketing

    How Is Needle-Punch Felt Made?


    The process for making needle punched felt begins with determining the final use for the felt and what properties it needs. Depending on whether the goal is to create a thermal “heat shield” or under carpet padding or filtering COVID19 particles out of a house filtration system, will create very different needs for how an engineer will create a product.
    For any type of nonwoven, including needle-punch felt, this process starts with fiber selection. Different fibers have different characteristics that provide different traits that can help with different requirements and can potentially be combined in different percentages to create even more capabilities in the finished felt.

    Once the desired fibers have been chosen, other specifications such as weight per sq yard, thickness, surface texture, and many other factors must be determined to achieve the optimal product for the end-user.


    Once all of the design engineering has been determined, the construction of the felt starts with large bales of loose fiber. These fibers can be synthetic like polyester, nylon, acrylic, rayon, or fiberglass, or they can be organic like wool, cotton, or alpaca.

    These bales of fiber must then go into machines called bale breakers. These machines break the compact bale of fibers apart so that they are easier to process.

    Needlepunch felt production bale breaker

    Many felts involve mixing different types of fiber together in order to get the desired outcome. This is done by carefully weighing the fiber that goes from the bale breakers into the next step of the process, blending and carding to achieve the correct % of the blend.

    Nonwoven production line weigh pan

    The breaking up and mixing of fiber is done at carding. Carding works by feeding loose beds of fiber into large wired rollers. This wire works to separate each strand of fiber, mix and blend the components together and orient the fiber in a single direction.

    The fiber exits the carding machine in the form of a web. This webbing is similar to the fake spider webs you see around Halloween time and resembles the consistency of cotton candy. It is the first time the fiber looks like a fabric but, just like cotton candy, this material has very little strength to it.

    Nonwoven production line carded web

    This webbing is laid onto a conveyor belt which carries the web to a cross-lapper. The lapper folds each thin layer of webbing over itself which provides weight and thickness to the finished felt. The number of layers depends on the target thickness and weight of the finished product.

    Nonwoven production line cross-lapper

    After the lapper, the layers of webbing will enter the needle loom. This is where needle-punch felt gets its name.

    A needle loom is a precise machine that uses barbed needles mounted on a needle board to pierce the layered web of fiber. The needle boards punch the fibers at a rate of 600-2,000 punches per minute. This repeated punching of needles entangles the fibers together which creates a strong bond. Needle looms can be “in-line” or “off-line.”

    This is the end of the felt-making process for some felts. But others go on to receive different finishing treatments such as additional needling or adding more layers of felt to build density, heat treating, calendaring, singeing, and laminating. Some felts also get combined into composite layers with other felt, foam, rubber, or other materials. Here is a quick video of an “off-line” needle loom that is further entangling (or densifying) a piece of felt.


    Whether creating an automotive heat shield, an acoustic panel, an industrial felt for gasketing, or any other needle-punch nonwoven. Bouckaert Industrial Textiles is here to help you engineer the best product to meet your needs. If you think that a nonwoven felt might be the right choice for your application or have any other questions, then contact us today!

  4. Capital Investments for 2020

    Leave a Comment

    New Nonwoven Card New Needleloom for Nonwovens

    Bouckaert Industrial Textiles is excited to announce the addition of three new pieces of nonwoven manufacturing equipment. This equipment will be coming online in January 2020.

    Our white, synthetic fiber production line will see the addition of two new critical pieces of equipment. First, the line is getting a brand new Bematic card. This will improve our quality control and blending capabilities. Additionally, a new up-stroke needle-loom from Shoou Shyng will be added in-line. When combined with the existing down-stroke loom, we will now be able to needle from both sides. Specifically targeting synthetic and glass fiber felt products, this needlepunch line will efficiently produce goods from 6oz per sq yard to 65oz per sq yard in varying thicknesses.

    In addition to the improvements to the white line, a second, new Shoou Shyng needle-loom has been added offline to augment our production of grey and colored nonwovens.

    Overall, these improvements will allow us to phase out some older equipment and expand our capabilities when it comes to weight, width, and control for our products.

    These new capital investments, totaling $1.9 million, will position Bouckaert to be able to continue to meet the current market needs as well as opening access to a number of new markets we plan to enter into in the future.

    If you have any questions regarding our new equipment or how this will change our capabilities, please reach out to our Business Development and Marketing Manager, Alex d’Anjou (

  5. New Air-Lay line Coming In April 2017

    Leave a Comment

    Bouckaert Industrial Textiles (BIT), a roll goods producer of diverse non-wovens to the thermal and acoustical insulation, equestrian, automotive, specialty filtration, vibration dampening, green-roof and industrial markets announced today that it has acquired a new, 3.4 meter wide, air-lay line from Laroche S.A. and TechnoPlants srl. The line is due to be delivered starting in January and be online in the beginning of the second quarter of 2017, making material primarily for the thermal and acoustical insulation markets with additional capacity being geared towards specialty filtration and conveyor belting.

    At over $3 million, projected to manufacture 8 to 10 million lbs of material per year, and adding 15 new specialized manufacturing jobs, this is the largest such purchase in Bouckaert’s 28 year history. When asked “Why now?” for such a purchase BIT’s President, Max Brickle (also President of the parent company The Brickle Group), stated “We originally looked into bringing on this capacity due to our current client’s growing business and requests for material we could not supply with our current lines. It was this desire to support our client’s needs that really made the decision.”

    Bouckaert has confirmed that their new line’s capacity has already drawn a lot of attention from various industries and companies. Many of these companies are looking to leverage Bouckaert’s extensive record on capability and quality control with its geographical position in the US northeast, allowing them to reduce shipping costs while increasing the quality and consistency of their products.

    When asked “What’s next for Bouckaert after getting this line up and running?” Mr. Brickle just smiled and said “The future. Give us a call if you want to discuss it.”